Effect of Selenium Application on Growth, Antioxidative Capacity, and Nutritional Quality in Purple Lettuce Seedlings

Author:

Huang Sijie12,Ying Zhengzheng1,Chen Jian3,Yang Yuwen2,Zhang Jibing2,Yang Lifei1,Liu Mingqing2ORCID

Affiliation:

1. College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China

2. Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, China

3. Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China

Abstract

Selenium (Se) is involved in the growth and development of plants. More importantly, Se from plant foods is a primary source of Se intake for humans and animals. Improving the Se content in vegetables through biofortification is an effective way to solve the hidden hunger induced by Se deficiency. This study demonstrated the effect of different exogenous Se application concentrations on the growth, antioxidative capacity, and nutritional quality of purple lettuce (Lactuca sativa var. crispa L. “Purple Rome”) at the seedling stage. The low Se application concentration (≤8 μM) significantly promoted the lettuce seedling growth. Conversely, the high Se application concentration (16 μM) inhibited the seedling growth and overproduced the reactive oxygen species in lettuce root tips, which caused oxidative damage to membrane lipids and cell death. Furthermore, the enzyme activities and gene expression of the antioxidant enzymes, superoxide dismutase-peroxidase, and catalase, were significantly increased under exogenous Se application. The exogenous Se application significantly increased the accumulation of nutrients in purple lettuce at the seedling stage. Remarkably, the exogenous Se application concentrations were significantly positively related to the Se and anthocyanin contents. The gene expression levels of chalcone synthase were positively correlated with the anthocyanin contents under exogenous Se application. This study contributes to the role of Se in lettuce growth and provides a reference for producing high-quality purple lettuce rich in Se and anthocyanins.

Funder

National Key R&D Program of China

China Agriculture Research System

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3