Analyses of Chloroplast Genome of Eutrema japonicum Provide New Insights into the Evolution of Eutrema Species

Author:

Li MengyaoORCID,Zhang Ran,Li Jie,Zheng Kaimin,Xiao Jiachang,Zheng Yangxia

Abstract

Wasabi (Eutrema japonicum) is a vegetable of Brassicaceae family, currently cultivated in Southwest Asia. It is rich in nutritional and has a spicy flavour. It is regarded as a rare condiment worldwide. Its genetic profile for yield improvement and the development of E. japonicum germplasm resources remains unknown. Cognizant of this, this study sequenced and assembled the chloroplast (cp) genome of E. japonicum to enrich our genomic information of wasabi and further understand genetic relationships within the Eutrema species. The structural characteristics, phylogeny, and evolutionary relationship of cp genomes among other Brassicaceae plants were analyzed and compared to those of Eutrema species. The cp genome of E. japonicum has 153,851 bp with a typical quadripartite structure, including 37 tRNA genes, 8 rRNA genes, and 87 protein-coding genes. It contains 290 simple sequence repeats and prefers to end their codons with an A or T, which is the same as other Brassicaceae species. Moreover, the cp genomes of the Eutrema species had a high degree of collinearity and conservation during the evolution process. Nucleotide diversity analysis revealed that genes in the IR regions had higher Pi values than those in LSC (Large single copy) and SSC (Small single copy) regions, making them potential molecular markers for wasabi diversity studies. The analysis of genetic distance between Eutrema plants and other Brassicacea plants showed that intraspecies variation was found to be low, while large differences were found between genera and species. Phylogenetic analysis based on 29 cp genomes revealed the existence of a close relationship amongst the Eutrema species. Overall, this study provides baseline information for cp genome-based molecular breeding and genetic transformation studies of Eutrema plants.

Funder

the Sicuan Science and Technology Program

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3