Involvement of CYP51A and CYP51B in Growth, Reproduction, Pathogenicity, and Sensitivity to Fungicides in Colletotrichum siamense

Author:

Hu Shuodan,Wu Jianyan,Yang Xiaoqi,Xiao Wenfei,Yu Hong,Zhang ChuanqingORCID

Abstract

Strawberry crown rot is a serious fungal disease that poses a great threat to strawberry production in the growth cycle. The dominant pathogens of strawberry crown rot pathogens were different in different periods. The main pathogen of strawberry crown rot at the seedling stage is unclear. In this study, 74 Colletotrichum spp. were isolated from 100 strawberry plants at the seedling stage. Based on the morphological observations and phylogenetic analysis of multiple genes (ACT, CAL, CHS, GAPDH, and ITS), all 74 tested isolates were identified as C. gloeosporioides species complex, including 69 isolates of C. siamense and 5 isolates of C. fructicola. Colletotrichum siamense is the main pathogen of strawberry crown rot at the seedling stage in Zhejiang, China. The sterol demethylation inhibitors (DMIs) were used to control strawberry crown rot, and their target was the CYP51 gene. The role of the homologous CYP51 gene in growth, reproduction, pathogenicity, and sensitivity to DMI fungicides in C. siamense has not been determined. Our study found that the pathogenicity of CsCYP51A deletion mutants to strawberry leaves and stems was weakened. The hyphae growth rate of CsCYP51B deletion mutants was significantly slower than that of the wild type, but the sporulation and appressorium production rates increased. CsCYP51B deletion mutants had significantly increased pathogenicity to the stem. Deletion of CsCYP51A led to increased sensitivity to prothioconazole, ipconazole, hexaconazole, triadimefon, prochloraz, tebuconazole, metconazole, propiconazole, and difenoconazole. CsCYP51B deletion mutants were more insensitive. Our results indicate that the effect of the homologous CsCYP51 gene on hyphae growth, pathogenicity, and sensitivity to DMI fungicides differs.

Funder

Agriculture and Social Development Research Project of Hangzhou

Science Technology Department of Zhejiang Province

Joint-extension Project of important Agriculture Technology in Zhejiang Province

Postdoctoral Science Foundation of Zhejiang Province, China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3