Inhibition of the Growth of Botrytis cinerea by Penicillium chrysogenum VKM F-4876D Combined with Fludioxonil-, Difenoconazole-, or Tebuconazole-Based Fungicides

Author:

Hatem Amjad1,Yaderets Vera1,Karpova Nataliya1ORCID,Glagoleva Elena1,Ovchinnikov Alexander1,Petrova Kseniya1,Shibaeva Alexandra1,Dzhavakhiya Vakhtang1

Affiliation:

1. Federal Research Center “Fundamentals of Biotechnology”, Russian Academy of Sciences, 117312 Moscow, Russia

Abstract

Botrytis cinerea, causing grey mold, is a dangerous plant pathogen able to infect agricultural crops during the whole production cycle, including storage and transportation. A wide set of pathogenicity factors, high ecological plasticity, and universality of propagation and spreading of this fungus significantly complicate the control of this pathogen. A rapid increase in pathogen tolerance to fungicides dictates the necessity of developing antiresistant protection strategies, which include the use of biopreparations based on antagonistic microorganisms or their metabolites. The purpose of the study was to evaluate the antifungal activity of a dry biomass of P. chrysogenum VKM F-4876D (DMP), both individually and in combination with tebuconazole-, fludioxonil-, or difenoconazole-containing compounds recommended to control grey mold, in relation to B. cinerea isolated from grape samples. A water suspension of DMP was added to the PDA medium at a concentration of 1.0, 2.5, 5.0, 7.5, and 10.0 g/L. The pathogen growth inhibition was evaluated after 3, 7, and 14 days of cultivation; fungal cultures grown on DMP-free medium were used as a control. The resulting effective DMP concentration was 2.5 g/L. The effective concentrations of fungicides included in the study were determined to be 0.5 mg/L (tebuconazole), 0.1 g/L (difenoconazole), and 0.04 mg/L (fludioxonil). Combining DMP (2.5 g/L) with tebuconazole, difenoconazole, or fludioxonil (all taken at the effective concentrations) resulted in pathogen growth inhibition after 7 days of incubation by 86.5, 85.6, and 84.6%, respectively. Among all studied variants, the DMP (2.5 g/L) + difenoconazole (1.0 mg/L) combination provided the most efficient control of B. cinerea development under in vitro conditions: even after 14 days of incubation, the pathogen growth suppression remained at the level of 51.3%, whereas the DMP combination with tebuconazole or fludioxonil provided only 28.5 and 37.4%, respectively. The obtained results show good prospects for the efficient control of grey mold development, together with the reduction of pesticide loads on agrobiocoenoses and the prevention of the emergence of new resistant forms of plant pathogens.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3