Long-Term Green Manure Rotations Improve Soil Biochemical Properties, Yield Sustainability and Nutrient Balances in Acidic Paddy Soil under a Rice-Based Cropping System

Author:

Qaswar Muhammad,Huang Jing,Ahmed Waqas,Li Dongchu,Liu Shujun,Ali Sehrish,Liu Kailou,Xu Yongmei,Zhang Lu,Liu Lisheng,Gao Jusheng,Zhang HuiminORCID

Abstract

Cultivation of green manure (GM) crops in intensive cropping systems is important for enhancing crop productivity through soil quality improvement. We investigated yield sustainability, nutrient stocks, nutrient balances and enzyme activities affected by different long-term (1982–2016) green manure rotations in acidic paddy soil in a double-rice cropping system. We selected four treatments from a long-term experiment, including (1) rice-rice-winter fallow as a control treatment (R-R-F), (2) rice-rice-milkvetch (R-R-M), (3) rice-rice-rapeseed (R-R-R), and (4) rice-rice-ryegrass (R-R-G). The results showed that different GM rotations increased grain yield and the sustainable yield index compared with those of the R-R-F treatment. Compared with those of R-R-F, the average grain yield of early rice in R-R-M, R-R-R, and R-R-G increased by 45%, 29%, and 27%, respectively and that of late rice increased by 46%, 28%, and 26%, respectively. Over the years, grain yield increased in all treatments except R-R-F. Green manure also improved the soil chemical properties (SOM and total and available N and P), except soil pH, compared to those of the control treatment. During the 1983–1990 cultivation period, the soil pH of the R-R-M treatment was lower than that of the R-R-F treatment. The addition of green manure did not mitigate the soil acidification caused by the use of inorganic fertilizers. The soil organic matter (SOM), total nitrogen (TN) and total phosphorus (TP) contents and stocks of C, N and P increased over the years. Furthermore, GM significantly increased phosphatase and urease activities and decreased the apparent N and P balances compared with those in the winter fallow treatment. Variance partitioning analysis revealed that soil properties, cropping systems, and climatic factors significantly influenced annual grain yield. Aggregated boosted tree (ABT) analysis quantified the relative influences of the different soil properties on annual grain yield and showed that the relative influences of TN content, SOM, pH, and TP content on annual crop yield were 27.8%, 25.7%, 22.9%, and 20.7%, respectively. In conclusion, GM rotation is beneficial for sustaining high crop yields by improving soil biochemical properties and reducing N and P balances in acidic soil under double- rice cropping systems.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3