Effects of Semiarid Wheat Agriculture Management Practices on Soil Microbial Properties: A Review

Author:

Rodgers Hannah R.ORCID,Norton Jay B.,van Diepen Linda T. A.

Abstract

Agricultural management decisions on factors such as tillage, fertilization, and cropping system determine the fate of much of the world’s soils, and soil microbes both mediate and respond to these changes. However, relationships between management practices and soil microbial properties are poorly understood, especially in semiarid regions. To address this knowledge gap, we reviewed research papers published between 2000 and 2020 that analyzed soil microorganisms in semiarid wheat fields. We aimed to determine if and how soil microbial properties reliably respond to management, and how these properties indicate long-term changes in soil health, carbon (C) sequestration, and crop yield. We found that reducing tillage increases microbial activity as much as 50% in upper soil layers and stratifies both bacteria and fungi by depth. Higher cropping intensity (reduced fallow) increases C storage, microbial activity, and biomass, and particularly fungal biomass, which can be three times greater under continuous wheat than wheat-fallow. Chemical and organic fertilizers both increase bacterial biomass, though only organic inputs provide lasting benefits by promoting C storage and increasing fungal as well as bacterial biomass. We found microbial properties to be sensitive indicators of long-term changes in soil health and productivity, and formed recommendations on appropriate sampling, analysis, and interpretation of microbial data depending on the system studied.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference97 articles.

1. World Food and Agriculture: Statistical Pocketbook 2018,2018

2. Summary for Policymakers,2019

3. Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security

4. Pilot Analysis of Global Ecosystems: Agroecosystems;Wood,2000

5. Soil Erosion Threatens Food Production

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3