Transcriptome-Based Comparative Analysis of Transcription Factors in Response to NaCl, NaOH, and Na2CO3 Stresses in Roots of Autotetraploid Rice (Oryza sativa L.)

Author:

Wang Yingkai1,Zhou Yiming1,Liu Keyan1,Wang Ningning1ORCID,Wu Yujie1,Zhang Chunying1,Ma Jian1

Affiliation:

1. Faculty of Agronomy, Jilin Agricultural University, Changchun 130000, China

Abstract

Soil salinity is a severe constraint on crop productivity that triggers plant salt stress response pathways. The salt stress responses are controlled by transcriptional regulatory networks that enhance plant stress tolerance by manipulating the expression of transcription factor (TFs)-encoding genes. Identifying TFs associated with salt tolerance contributes to salt-tolerant crop breeding. In this study, a comparative transcriptome analysis was performed to investigate the global gene expression of entire TFs in diploid and autotetraploid rice with different salt tolerance levels, considering NaCl stress, NaOH stress, and Na2CO3 stress. A total of 54, 54 and 55 TF families were co-expressed in diploid and tetraploid roots under three stresses, respectively. Furthermore, we investigated differentially expressed TFs (DE-TFs) based on different comparisons, and the statistical analysis indicated that the DE-TFs derived from the three types of stress were as follows: Na2CO3 (53 TF families, 1356 DE-TFs) > NaCl (19 TF families, 214 DE-TFs) > NaOH (18 TF families, 152 DE-TFs). These results imply that Na2CO3 stress induced a more obvious biological responses in the roots than the other two stresses. GO and KEGG pathway enrichment analysis of DE-TFs revealed the importance of plant hormone signal transduction and MAPK signaling pathways that may contribute to the saline–alkaline tolerance of tetraploid rice. This study provides gene resources that are valuable for exploring the regulatory mechanism of TFs involved in the saline–alkaline tolerance of polyploid rice.

Funder

Jilin Provincial Research Foundation for Technologies Research of China

Doctoral Research Startup Funds, National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference77 articles.

1. Molecular mechanisms of salinity tolerance in rice;Chen;Crop J.,2021

2. An overview of global rice production, supply, trade, and consumption;Muthayya;Ann. N. Y. Acad. Sci.,2014

3. What it will take to feed 5.0 billion rice consumers in 2030;Khush;Plant Mol. Biol.,2005

4. Li, B. (2010). Desertification and Its Control in China, Springer Berlin Heidelberg.

5. Novo, F.G., and Bouzas, F.G. (2006). Water Crisis: Myth or Reality, Taylor & Francis/Balkea.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3