Temporal and Spatial Variation in Rainfall Erosivity in the Rolling Hilly Region of Northeast China

Author:

Li Xiaoyu1ORCID,Wang Xiaowei2,Gu Jiatong3,Sun Chen1,Zhao Haigen1,You Songcai1

Affiliation:

1. Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China

2. School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China

3. Agronomy College, Shenyang Agricultural University, Shenyang 110866, China

Abstract

The Rolling Hilly Region of Northeast China (RHRNEC) is a critical grain production area in China, and soil erosion is a major problem in this region. To determine spatial and temporal changes in rainfall erosivity (RE) in the RHRNEC and generate information useful for soil and water conservation, agricultural management, and ecological protection efforts, a RE index consisting of nine erosivity indices based on normal and extreme precipitation was established. The normal RE index (NREI) comprised annual RE (ARE), wet season RE (WRE), dry season RE (DRE), typical wet-month RE (TWRE), and typical dry-month RE (TDRE), and the extreme RE index set (EREI) comprised maximum one-day RE (RE × 1 day), maximum five consecutive days RE (RE × 5 day), storm RE (RE50), and maximum continuous RE (CRE). ARE, WRE, and TWRE decreased at relative rates of 2.5%, 2.9%, and 4.1%, respectively. By comparison, DRE increased at a non-significant relative rate of 6.3%, and all extreme RE indices decreased at a non-significant rate relative to 1981–2015 mean values. The future trends for all RE indices were predicted to be opposite to historical trends. The future trends and historical trends of all indices exhibited opposite patterns. RE gradually increased from north to south, and WRE, DRE, and all extreme RE indices were significantly negatively correlated with longitude, latitude, and altitude (p < 0.05). ARE, WRE, and TWRE showed increasing trends in the north and south and decreasing trends in the center. The findings are useful for soil and water conservation, especially for agricultural management and ecological protection.

Funder

The Ministry of Science and Technology (MOST) of China

Beijing Key Laboratory of Water Environment and Ecological Technology of the Watershed

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3