Optimizing Straw Mulching Methods to Control Soil and Water Losses on Loess Sloped Farmland

Author:

Zhao Xinkai1,Song Xiaoyu1,Wang Danyang2,Li Lanjun1,Meng Pengfei1,Fu Chong1,Wang Long1,Wei Wanyin1,Yang Nan1,Liu Yu1,Li Huaiyou3

Affiliation:

1. State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China

2. Beijing Water Conservancy Engineering Management Center, Beijing 100102, China

3. Xifeng Experiment Station of Soil and Water Conservation, Yellow River Conservancy Committee, Qingyang 745000, China

Abstract

Straw mulching is a key method for controlling soil and water losses. Mulching costs may be reduced by applying it in strips rather than over entire areas. However, the effect of different straw mulching methods on the effectiveness of reducing soil erosion is unclear. In this study, the effects of straw mulching strip length (covering 1/4, 1/2, 3/4, and 4/4 of the slope length) and coverage rate (0.2, 0.5, and 0.8 kg m−2) on interception, infiltration, runoff, and soil erosion were investigated at the plot scale using rainfall simulation experiments. The further complex correlations between these variables were analyzed using structural equation modeling (SEM). Bare slopes were used as a control group. The rainfall intensity was chosen to be 60 mm h−1. The results showed that (1) the modified Merriam interception model can describe the change in interception with time under straw mulching conditions well (R2 > 0.91, NSE > 0.75). (2) A total of 35.39–78.79% of the rainwater is converted into infiltration on straw-covered slopes, while this proportion is 36.75% on bare slopes. The proportion of rainwater converted to infiltration was greatest (78.79%) when the straw covered 3/4 of the slope length at a coverage rate of 0.5 kg m−2, which was the most conducive to rainwater harvesting on the slope. (3) Straw mulching protects the topsoil from the impact of raindrops and directly affects the sediment yield (direct effect = −0.44). Straw mulching can also indirectly affect sediment yield by increasing interception, reducing runoff, and decreasing the sediment carrying capacity of runoff (indirect effect = −0.83). Compared with bare slopes, straw covering at least 1/2 of the slope length can significantly reduce runoff yield, but straw covering only 1/4 of the slope length can significantly reduce sediment yield. Moreover, once the straw mulch slope length reaches 3/4 and the coverage rate reaches 0.5 kg m−2, further increases in mulch slope length and coverage rate will not significantly reduce the runoff and sediment yields. These results assessed the effectiveness of different straw mulching methods in controlling soil and water losses on sloping farmland.

Funder

National Natural Science Foundation of China

Natural Science Basic Research Plan in the Shaanxi Province of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3