Regional Monitoring of Leaf ChlorophyII Content of Summer Maize by Integrating Multi-Source Remote Sensing Data

Author:

Tian Hongwei12,Cheng Lin12,Wu Dongli3,Wei Qingwei14,Zhu Liming5ORCID

Affiliation:

1. Key Laboratory of Agrometeorological Safeguard and Applied Technique, China Meteorological Administration, Zhengzhou 450003, China

2. Institute of Meteorological Sciences of Henan Province, Zhengzhou 450003, China

3. China Meteorological Administration, Atmospheric Observation Center, Beijing 100081, China

4. Hebi Meteorological Bureau, Hebi 458030, China

5. College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, China

Abstract

This study addresses the problem of restricted ability for large-scale monitoring due to the limited cruising time of unmanned aerial vehicles (UAV) by identifying an optimal leaf ChlorophyII content (LCC) inversion machine learning model at different scales and under different parameterization schemes based on simultaneous observations of ground sampling, UAV flight, and satellite imagery. The following results emerged: (1) The correlation coefficient between most remote sensing features (RSFs) and LCC increased as the remote scale expanded; thus, the scale error caused by the random position difference between GPS and measuring equipment should be considered in field sampling observations. (2) The LCC simulation accuracy of the UAV multi-spectral camera using four machine learning algorithms was ExtraTree > GradientBoost > AdaBoost > RandomForest, and the 20- and 30-pixel scales had better accuracy than the 10-pixel scale, while the accuracy for three feature combination schemes ranked combination of extremely significantly correlated RSFs > combination of significantly correlated and above RSFs > combination of all features. ExtraTree was confirmed as the optimal model with the feature combination of scheme 2 at the 20-pixel scale. (3) Of the Sentinel-2 RSFs, 27 of 28 were extremely significantly correlated with LCC, while original band reflectance was negatively correlated, and VIs were positively correlated. (4) The LCC simulation accuracy of the four machine learning algorithms ranked as ExtraTree > GradientBoost > RandomForest > AdaBoost. In a comparison of two parameterization schemes, scheme 1 had better accuracy, while ExtraTree was the best algorithm, with 11 band reflectance as input RSFs; the RMSE values for the training and testing data sets of 0.7213 and 1.7198, respectively.

Funder

Science and Technology Project of Henan Province

Key Laboratory of Agrometeorological Safeguard and Applied Technique, CMA

Hebi Key Laboratory of Agrometeorology and Remote Sensing Anyang Observatory

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3