Effect of Phosphorus, Iron, Zinc, and Their Combined Deficiencies on Photosynthetic Characteristics of Rice (Oryza sativa L.) Seedlings

Author:

Gao Dapeng1,Ran Cheng1,Dang Kun1,Wang Xiaolei1,Zhang Yunhe1,Geng Yanqiu1,Liu Shuying2ORCID,Guan Zhengwen1,Guo Liying1,Shao Xiwen1

Affiliation:

1. Agronomy College, Jilin Agricultural University, Changchun 130118, China

2. College of Life Science, Jilin Agricultural University, Changchun 130118, China

Abstract

Combined elemental deficiencies are more complex and insidious physiological metabolic responses than single elemental stresses. To determine the effects of phosphorus (P), iron (Fe), zinc (Zn), and their deficient combinations on photosynthetic characteristics of rice seedlings, we investigated their effects on dry weight, chlorophyll (Chl) content, rapid photosynthetic carbon assimilation CO2 responses, and Chl fluorescence in four-week-old rice (CB9 and BJ1 cultivars) seedlings. The results showed that the dry matter, maximum carboxylation efficiency (Vc,max), and maximum electron transfer efficiency (Jmax) of seedlings were all reduced to different degrees under the element deficiency treatments. JIP-test analysis showed that the decrease in the concentration of active PSII reaction centers (RC/ABS) under -Zn treatment was the main reason for the inhibition of performance index PIABS. The -P treatment reduced RC/ABS and inhibited electron transfer (ψEo). Primary photochemical reactions (φPo) of -P-Zn treated seedlings were also inhibited compared to the -P treatment. The -Fe and -Fe-Zn treatments inhibited photosynthesis most severely, which not only reduced RC/ABS but also severely inhibited φPo and ψEo. Notably, the -P-Fe and -P-Fe-Zn treatments of the CB9 improved the RC/ABS, alleviating the limitation of Fe deficiency. These results help enhance the understanding of the complex relationship between nutrient balance and photosynthesis, especially for P, Fe, Zn, and their combined deficiency.

Funder

National key research and development program

Open Project of the Key Laboratory of Germplasm Innovation and Physiological Ecology of Cold land Grain Crops, Ministry of Education

the Jilin Province Major Science and Technology Special Project

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3