Affiliation:
1. Department of Agronomy, Jilin Agricultural University, Changchun 130118, China
2. Jilin Provincial Laboratory of Crop Germplasm Resources, Changchun 130118, China
3. School of Life Sciences, Linyi University, Linyi 276012, China
Abstract
Saline-sodic stress induces iron deficiency in rice, reduces leaf photosynthetic performance, and inhibits yield enhancement. In this study, we investigated the effects of exogenous Fe on the photosynthetic performance and transcriptomics of two different tolerant rice cultivars CB9 (Changbai9: saline tolerant cultivar) and TH899 (Tonghe899: saline sensitive cultivar) with 4-week-old Fe-deficient rice seedlings under saline stress, Fe deficiency stress, and both co-stresses. The results showed that under saline and alkaline stress, spraying exogenous iron favored the growth of the two cultivars of rice, with a 32.68% and 39.82 increase in fresh weight, a 2.20-fold and 2.16-fold increase in pigment, respectively, and an 80.28% and 100.00% increase in net photosynthetic rate, respectively, as compared with the iron-deficiency treatment. Transcriptome analysis showed that we found a higher number of differentially expressed genes (7785 differentially expressed genes) in response to exogenous Fe spraying in the soda-salt sensitive variety TH899. The differentially expressed genes that are common to the two cultivars are primarily enriched in metabolic pathways, including plant hormone signal transduction (map04075) and phenylpropanoid biosynthesis (map00940). Specifically, among these genes, 14 are differentially expressed in the carotenoid biosynthetic metabolic pathway. The differentially expressed genes specific to the salinity-tolerant variety CB9 were mainly enriched in the metabolic pathways of glyoxylate and dicarboxylic acid methyl metabolism (map00630), and carbon fixation in photosynthetic organisms (map00710), among which 20 genes were significantly expressed in the pathway for carbon fixation in photosynthetic organisms (map00710). The research results offer specific theoretical support for enhancing the salt tolerance of rice.
Funder
Science and technology training program of Jilin Province