Novel Small Antimicrobial Peptides Extracted from Agricultural Wastes Act against Phytopathogens but Not Rhizobacteria

Author:

Ditsawanon Thitiporn,Roytrakul SittirukORCID,Phaonakrop Narumon,Charoenlappanit Sawanya,Thaisakun Siriwan,Parinthawong Nonglak

Abstract

Nonedible materials such as agricultural wastes can serve as sources of antimicrobial peptides (AMPs) effective against bacterial plant pathogens. In this study, thirteen agricultural samples were collected and their protein hydrolysates obtained using pepsin. Peptides smaller than 3 kDa were purified by reverse-phase chromatography, cation exchange chromatography, and pI-based fractionation and tested for activity against plant pathogenic bacteria at each step. Active peptides were then analyzed for putative mechanisms using nanoLC–MS/MS and the Mascot program. Ultimately, eight candidate peptides originating from bagasse were selected and chemically synthesized for a comparative study of growth inhibition in plant pathogenic bacteria and plant growth-promoting rhizobacteria (PGPRs). Three synthesized peptides exhibited a potent activity against plant pathogenic bacteria while also supporting the growth of PGPRs. Proteomics analysis revealed the peptides PQLAVF (Pro-Gln-Leu-Ala-Val-Phe) and MDRFL (Met-Asp-Arg-Phe-Leu) to act against Xanthomonas oryzae pv. oryzae via membrane-active mechanisms, while peptide VQLMNSL (Val-Gln-Leu-Met-Asn-Ser-Leu) acted against Pectobacterium carotovorum and Agrobacterium rhizogenes through intracellular-active mechanisms. Further study remains necessary to customize peptides by amino acid substitution not only for a higher effective activity against these and other critical pathogens, but also for a higher stability of peptides in critical condition when applied in industrial processes in the future.

Funder

King Mongkut's Institute of Technology Ladkrabang

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3