Evaluating the Neural Network Ensemble Method in Predicting Soil Moisture in Agricultural Fields

Author:

Gu ZheORCID,Zhu Tingting,Jiao Xiyun,Xu JunzengORCID,Qi Zhiming

Abstract

Soil is an important element in the agricultural domain because it serves as the media that bridges the water consumption and supply processes. In this study, a neural network ensemble (NNE) method was employed to predict the soil moisture to eliminate the effects of random initial parameters of neural network (NN) on model accuracy. The constructed NNE model predicts daily root zone soil moisture continuously for the whole crop growing season and the water consumption and supply processes were separately modeled. The soil profile was divided into multiple layers and modeled separately. Weather data (including air temperature, humidity, wind speed, net radiation, and precipitation), rooting depth, and the hesternal soil moisture of each layer were used as the input. A calibrated root zone water quality model for maize (Zea mays L.) was used to generate training and evaluation data. The result showed that with 100 randomly initialized NN models, the NNE model achieved an average R2 of 0.96 and nRMSE of 5.93%, suggesting that the NNE model learned the soil moisture dynamics well and sufficiently improved the robustness of soil moisture prediction with high accuracy.

Funder

Fundamental Research Funds for the Central Universities

China Postdoctoral Science Foundation

National Natural Science Foundation of China

the Belt and Road Special Foundation of the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3