3DPhenoMVS: A Low-Cost 3D Tomato Phenotyping Pipeline Using 3D Reconstruction Point Cloud Based on Multiview Images

Author:

Wang Yinghua,Hu Songtao,Ren He,Yang Wanneng,Zhai Ruifang

Abstract

Manual phenotyping of tomato plants is time consuming and labor intensive. Due to the lack of low-cost and open-access 3D phenotyping tools, the dynamic 3D growth of tomato plants during all growth stages has not been fully explored. In this study, based on the 3D structural data points generated by employing structures from motion algorithms on multiple-view images, we proposed a 3D phenotyping pipeline, 3DPhenoMVS, to calculate 17 phenotypic traits of tomato plants covering the whole life cycle. Among all the phenotypic traits, six of them were used for accuracy evaluation because the true values can be generated by manual measurements, and the results showed that the R2 values between the phenotypic traits and the manual ones ranged from 0.72 to 0.97. In addition, to investigate the environmental influence on tomato plant growth and yield in the greenhouse, eight tomato plants were chosen and phenotyped during seven growth stages according to different light intensities, temperatures, and humidities. The results showed that stronger light intensity and moderate temperature and humidity contribute to a higher biomass and higher yield. In conclusion, we developed a low-cost and open-access 3D phenotyping pipeline for tomato and other plants, and the generalization test was also complemented on other six species, which demonstrated that the proposed pipeline will benefit plant breeding, cultivation research, and functional genomics in the future.

Funder

the National Natural Science Foundation of China

Key projects of Natural Science Foundation of Hubei Province

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3