A Method for Tomato Plant Stem and Leaf Segmentation and Phenotypic Extraction Based on Skeleton Extraction and Supervoxel Clustering

Author:

Wang Yaxin1,Liu Qi1,Yang Jie1,Ren Guihong1,Wang Wenqi1,Zhang Wuping1,Li Fuzhong1

Affiliation:

1. College of Software, Shanxi Agricultural University, Jinzhong 030801, China

Abstract

To address the current problem of the difficulty of extracting the phenotypic parameters of tomato plants in a non-destructive and accurate way, we proposed a method of stem and leaf segmentation and phenotypic extraction of tomato plants based on skeleton extraction and supervoxel clustering. To carry out growth and cultivation experiments on tomato plants in a solar greenhouse, we obtained multi-view image sequences of the tomato plants to construct three-dimensional models of the plant. We used Laplace’s skeleton extraction algorithm to extract the skeleton of the point cloud after removing the noise points using a multi-filtering algorithm, and, based on the plant skeleton, searched for the highest point path, height constraints, and radius constraints to separate the stem from the leaf. At the same time, a supervoxel segmentation method based on Euclidean distance was used to segment each leaf. We extracted a total of six phenotypic parameters of the plant: height, stem diameter, leaf angle, leaf length, leaf width and leaf area, using the segmented organs, which are important for the phenotype. The results showed that the average accuracy, average recall and average F1 scores of the stem and leaf segmentation were 0.88, 0.80 and 0.84, and the segmentation indexes were better than the other four segmentation algorithms; the coefficients of determination between the measurement values of the phenotypic parameters and the real values were 0.97, 0.84, 0.88, 0.94, 0.92 and 0.93; and the root-mean-square errors were 2.17 cm, 0.346 cm, 5.65°, 3.18 cm, 2.99 cm and 8.79 cm2. The measurement values of the proposed method had a strong correlation with the actual values, which could satisfy the requirements of daily production and provide technical support for the extraction of high-throughput phenotypic parameters of tomato plants in solar greenhouses.

Funder

Key research and development projects in Shanxi Province

Basic Research Project of Shanxi Provincial Department of Science and Technology

Shanxi Agricultural University Special Merit Program

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3