Author:
Jia Yun,Zhang Ying,Zhang Lei,Wang Fengwei,Yu Gang,Wang Yaling,Kang Xiaoyan,Wu Yongpeng
Abstract
Kiwifruit is an economically important horticultural crop with extremely high values in nutrition and health care. However, the molecular mechanisms underlying fruit quality formation remain largely limited for most kiwifruit varieties. Recently, a new kiwifruit cultivar with a high level of soluble solids, Actinidia arguta cv. Qinziyu (full-red flesh) was discovered through the introduction and propagation test. To provide new insights into fruit quality formation in a typical kiwifruit cultivar, we integrated full-length transcriptome surveys based on PacBio single-molecule real-time (SMRT) sequencing, key enzyme genes expression involved in carbohydrate and amino acids metabolism pathways, and bHLH gene family analysis to enhance the understanding of soluble sugar, organic acid, and anthocyanin biosynthesis in A. arguta cv. Qinziyu. A total of 175,913 CCSs were generated, of which 124,789 were identified as FLNC transcripts. In total, 45,923 (86.99%) transcripts were successfully annotated, and more than 76.05% of the transcripts were longer than 1 Kb. KEGG pathway analysis showed that 630 candidate genes encoding 55 enzymes were mainly involved in carbohydrate and amino acid biosynthesis pathways. Further analysis verified the expression of 12 key enzyme genes (e.g., pyruvate kinase (PK), enolase (ENO), hexokinase (HK), and phosphoglycerate kinase (PGK)) in flowers using quantitative real-time PCR. Furthermore, we also screened 10 AabHLH proteins’ function in anthocyanin biosynthesis and characterized the AabHLH gene family in A. arguta cv. Qinziyu. Overall, our research data generated by SMRT technology provide the first set of gene isoforms from a full-length transcriptome in A. arguta cv. Qinziyu and more comprehensive insights into the molecular mechanism of fruit quality formation.
Funder
Xi’an Bureau of Science and Technology under Grants
Department of Science and Technology of Shaanxi Province
Shaanxi Academy of Sciences
Subject
Agronomy and Crop Science