High Variation in Yield among Wild Blueberry Genotypes: Can Yield Be Predicted by Leaf and Stem Functional Traits?

Author:

Barai KallolORCID,Calderwood Lily,Wallhead Matthew,Vanhanen Henri,Hall Bruce,Drummond FrancisORCID,Zhang Yong-JiangORCID

Abstract

Wild lowbush blueberry fields are characterized by high genetic diversity, with a large number of genotypes coexisting in every field. Yield also varies among genotypes, which could be related to the variation in physiological and structural traits, but this has not been rigorously tested. In this study, we aimed to quantify the inter-genotype variation in yield, as well as leaf and stem functional traits, and to establish the relationship between functional traits and yield-related traits in wild blueberries. To do so, we carried out a study during the 2019 harvest season measuring structural and functional traits including stem number, stem length, stem diameter, leaf chlorophyll concentration, leaf mass area, leaf area per stem, leaf number per stem, number of branches per stem, leaf temperature, soil temperature, and soil water content and yield data including yield, berry size (weight of 100 berries), number of berries per stem, and length of berry cluster from two wild blueberry farms. We found high variations in structural, functional, and yield-related traits among genotypes, but not between two fields. We also found negative associations of the leaf mass per unit area and midday leaf temperature with the yield, whereas the leaf chlorophyll concentration was positively associated with the yield. Additionally, we found a quadratic relationship between yield-related traits (weight of 100 berries, number of berries per stem, and length of berry cluster) and stem length, with the optimum stem length for yield at 25 cm. Our results suggest that several leaf and stem functional traits are related with yield-related traits; thereby, those traits can be used to predict wild blueberry yields. Our findings could help growers and breeders select better-yielding genotypes based on structural and functional traits.

Funder

USDA National Institute of Food and Agriculture, Wild Blueberry Commission of Maine, Maine Department of Agriculture, Conservation and Forestry (SCBGP), UMaine Faculty Summer Research Award

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3