Biotransformation of Agricultural Wastes into Lovastatin and Optimization of a Fermentation Process Using Response Surface Methodology (RSM)

Author:

Javed SadiaORCID,Azeem Muhammad,Mahmood Saqib,Al-Anazi Khalid Mashay,Farah Mohammad AbulORCID,Ali Sajad,Ali BaberORCID

Abstract

Lovastatin is a competitive inhibitor of the enzyme 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-CoA Reductase). The HMG-CoA reductase is responsible for the production of mevalonate by the reduction of HMG-CoA. It is a rate-limiting step in the production of cholesterol. The current study demonstrates the production of lovastatin from an ethidium bromide mutated strain of Aspergillus terreus ATE-120 (saprophytic fungus) that is grown on 1–3% NaOH pretreated substrate of sugar cane bagasse (Saccharum officinarum L.). For the hyperproduction of lovastatin, different optimization parameters such as temperature, pH, inoculum size, fermentation period, and inoculum age were mentioned and analyzed via response surface methodology. The RSM results indicate that the maximum lovastatin yield (156.43 mg/L) was predicted at a 5.5 pH, 35 °C temperature, 4 mL inoculum size, 36 h inoculum age, and 48 h fermentation via solid state fermentation. According to these results, the effect of pH had a significant effect on lovastatin production, while other parameters had an insignificant effect, and coefficients of determination (R2) having a value of 77.24% indicates the goodness of the proposed model. The structure of the obtained drug was confirmed by nuclear magnetic resonance. Moreover, an X-ray diffraction analysis of the sample was carried out to characterize the physical form of the lovastatin. It can be concluded from the above study that the maximum yield of the drug can be found via RSM and that the selected strain (Aspergillus terreus ATE-120) has good potential for lovastatin production through solid-state fermentation.

Funder

King Saud University, Riyadh, Saudi Arabia

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3