Abstract
Abstract
Background
Lovastatin is one of the first statins to be extensively used for its cholesterol-lowering ability. It is commercially produced by fermentation. Species belonging to the genus Aspergillus are well-studied fungi that have been widely used for lovastatin production. In the present study, we produced lovastatin from sago processing wastewater (SWW) under submerged fermentation using oleaginous fungal strains, A. terreus KPR12 and A. caespitosus ASEF14.
Results
The intra- and extracellular concentrations of lovastatin produced by A. terreus KPR12 and A. caespitosus ASEF14 were lactonized. Because A. caespitosus ASEF14 produced a negligible amount of lovastatin, further kinetics of lovastatin production in SWW was studied using the KPR12 strain for 9 days. Lovastatin concentrations in the intra- and extracellular fractions of the A. terreus KPR12 cultured in a synthetic medium (SM) were 117.93 and 883.28 mg L–1, respectively. However, these concentrations in SWW were 142.23 and 429.98 mg L–1, respectively. The yeast growth inhibition bioassay confirmed the antifungal property of fungal extracts. A. terreus KPR12 showed a higher inhibition zone of 14 mm than the ASEF14 strain. The two-way analysis of variance (ANOVA; p < 0.01) showed significant differences in the localization pattern, fungal strains, growth medium, and their respective interactions. The lovastatin yield coefficient values were 0.153 g g–1 on biomass (YLOV/X) and 0.043 g g–1 on the substrate, starch (YLOV/S). The pollutant level of treated SWW exhibited a reduction in total solids (TS, 59%), total dissolved solids (TDS, 68%), biological oxygen demand (BOD, 79.5%), chemical oxygen demand (COD, 57.1%), phosphate (88%), cyanide (65.4%), and void of nutrients such as nitrate (100%), and ammonia (100%).
Conclusion
The starch-rich wastewater serves as a suitable medium for A. terreus KPR12 for the production of lovastatin. It simultaneously decontaminates the sago processing wastewater, enabling its reuse for irrigation/recreation.
Graphical Abstract
Funder
Ministry of Science and Technology Department of Biotechnology
Publisher
Springer Science and Business Media LLC
Subject
Applied Microbiology and Biotechnology,Bioengineering,Biotechnology
Reference85 articles.
1. Jeong S-M, Choi S, Kim K, Kim S-M, Lee G, Son JS, Yun J-M, Park SM. Association of change in total cholesterol level with mortality: a population-based study. PLoS ONE. 2018;13:1–11.
2. Collins R, Reith C, Emberson J, Armitage J, Baigent C, Blackwell L, Blumenthal R, Danesh J, Smith GD, DeMets D. Interpretation of the evidence for the efficacy and safety of statin therapy. Lancet. 2016;388:2532–61.
3. Lai L-ST, Tsai T-H, Cheng T-Y. The influence of culturing environments on lovastatin production by Aspergillus terreus in submerged cultures. Enzyme Microb Technol. 2005;36:737–48.
4. Endo A. The origin of the statins. In: International congress series. Elsevier; 2004: 3–8.
5. Barrios-González J, Miranda RU. Biotechnological production and applications of statins. Appl Microbiol Biotechnol. 2010;85:869–83.
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献