Characterization of the BnA10.tfl1 Gene Controls Determinate Inflorescence Trait in Brassica napus L.

Author:

Jia Yongpeng,Li Kaixiang,Liu Haidong,Zan Lingxiong,Du Dezhi

Abstract

Determinate inflorescences have a significant effect on the genetic improvement of rapeseed, so understanding the molecular function underlying the inflorescence trait may be beneficial to oilseed breeding. A previous study found candidate gene BnTFL1 (Terminal Flower 1) for control of the inflorescence trait on Brassica napus chromosome A10 (16,627–16,847 kb). However, little is known about the function of the BnTFL1 gene in B. napus. In this study, we firstly studied the formation of the shoot apical meristem and gene expression in indeterminate and determinate inflorescences; the results showed that the inflorescence architecture and BnA10.TFL1 expression showed significant differences in the shoot apex at the budding stage. Then, two alleles (named BnA10.TFL1 gene from indeterminate and BnA10.tfl1 gene from determinate) were cloned and sequence-analyzed; the results suggest that the open reading frame of the alleles comprises 537 bp, encodes 178 amino acids containing a conserved phosphatidylethanolamine-binding protein (PEBP) domain, and shares high similarity with Arabidopsis thaliana TFL1. To analyze the function of BnA10.TFL1, the BnA10.TFL1 gene was introduced into the determinate A. thaliana tfl1 mutant and B. napus 571 line by complementation experiment. The determinate traits were restored to indeterminate, and expression of BnA10.TFL1 was increased in the indeterminate shoot apex. These results reveal that BnA10.tfl1 is a gene controlling the determinate inflorescence trait. Moreover, the BnA10.TFL1 protein was localized to the nucleus, cytoplasm, and plasma membrane. Collectively, the results of this study help us to understand the molecular mechanism of determinate inflorescences and will provide a reliable research basis for the application of determinate inflorescences in B. napus.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3