Accumulation and Chemical Forms of Cadmium in Tissues of Different Vegetable Crops

Author:

Xiao Qingqing1,Wang Su2,Chi Yihan3

Affiliation:

1. School of Biology, Food and Environment, Hefei University, Hefei 230601, China

2. College of Art, Anhui University, Hefei 230601, China

3. Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China

Abstract

Large areas of arable lands in China have been contaminated by heavy metals, in which cadmium (Cd) contamination was the most prevalent. Cd accumulation in main food crops and leafy vegetables grown in Cd-contaminated fields has aroused considerable attention in recent years. The present study investigated the Cd pollution of farmland soils and vegetables in Qujing city of Yunnan Province, China. By comparing the Cd uptake capacities of different crops, this study aimed to provide guidance for agricultural production in Cd-contaminated farmland, and clarify the influence of Cd bioavailability in soil and chemical forms of Cd in plant roots on its migration. Results showed that soil Cd concentration was up to 37 mg kg−1, which was 61-fold higher than the soil environmental quality standard in China. Concentration of Cd in 73% of the investigated vegetable samples, with the mean value of 5.43 mg Cd kg−1 (dry weight basis), exceeded the food safety standard of China. Leafy vegetables had the highest bioaccumulation factors (BF) and transfer factors (TF), with the mean values of 0.53 and 0.41, respectively. Water spinach (Ipomoea aquatica Forsk.), cole (Brassica campestris L.), and fennel (Foeniculum dulce Mill.) had the highest Cd TFs, with averages of 0.67, 0.66, and 0.64, respectively. On the contrary, garlic (Allium sativum L.), onions (Allium fistulosum L.), and pea (Lathyrus odoratus L.) had the lowest Cd TFs, with averages of 0.04, 0.03, and 0.04, respectively. The main chemical fraction of Cd in garlic root was insoluble phosphate (35–48%), whereas in water spinach root, it was pectate, protein binding or sorbed fraction (50–64%), resulting in a higher TF value of water spinach than garlic. These results indicate that there were significant differences in Cd uptake and accumulation between vegetables, and the Cd accumulation in leafy vegetable was significantly higher than that in alliums. Therefore, it is possible to reduce the uptake and accumulation of Cd in crop edible parts by the selection of vegetable species with low Cd accumulation capacity. The chemical fractions of Cd in crop roots, especially the proportions of more mobile fractions, might be an important reason for the root-to-shoot Cd transport and Cd accumulation in the aerial portions.

Funder

National Natural Science Foundation of China

Talent Research Fund Project of Hefei University

Borrowing Transfer to Supplement Foundation of Hefei

double base demonstration teaching organization “Department of Food Engineering” of Anhui Provincial Department of Education

Anhui Quality Engineering Project Practice Education Base

Hefei University Quality Engineering Project Course Ideological and Political Demonstration

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3