Relationships Between Plant Architecture Traits and Cotton Yield Within the Plant Height Range of 80–120 CM Desired for Mechanical Harvesting in the Yellow River Valley of China

Author:

Yan ,Du ,Zhao ,Li ,Wang ,Eneji ,Yang ,Huang ,Meng ,Qi ,Xue ,Xu ,Tian ,Li

Abstract

Mechanical harvesting has become inevitable for cotton production in China due to the rising labor cost in the country. It usually requires a moderate plant height and compact plant architecture. Correlation and stepwise regression were employed to analyze databases of our 24 field experiments between 2010 and 2017 in Hebei Province. The purpose is to identify the relationships between plant architecture traits and seed cotton yield within natural plant height range (58.6–163.2 cm) or preferred plant height range (80–120 cm) for mechanical harvesting in the Yellow River Valley of China, and define some important factors affecting seed cotton yield. Under natural plant height range across all experiments, there was a significantly negative correlation (r= −0.452) between plant height and yield. On limited plant height range desired for mechanical harvesting, the degree of this negative correlation decreased to r= −0.366. The correlation of plant height with seed cotton yield varied greatly with year, cultivar, plant density and mepiquat chloride (MC) application. Moreover, stepwise regression analysis picked internode length of the 1st (generally including 1st–7th mainstem node from bottom), 2nd (8th–12th node) and 4th (above 17th node) mainstem section and the length of lower fruiting branch (LFB) as significant factors influencing seed cotton yield under plant height range of 80–120 cm. The results have implications for precise control of cotton plant architecture preferred for mechanized harvesting in China.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3