Height Estimation of Soil Erosion in Olive Groves Using a Time-of-Flight Sensor

Author:

Lima FranciscoORCID,Moreno HugoORCID,Blanco-Sepúlveda RafaelORCID,Andújar Dionisio

Abstract

The olive groves’ relevance has historically been ingrained in Mediterranean cultures. Spain stands out as a leading producer worldwide, where olive trees are extensively grown in the Andalusian region. However, despite the importance of this strategic agricultural sector, cultivation through the years has given rise to various crop management practices that have led to disruptive erosion processes. The objective is to measure land erosion in over 100-year-old olive groves considering the 3D reconstructed recent relief of olive tree mounds. A time-of-flight depth sensor, namely, Kinect v2, was employed to 3D model the target areas, i.e., trunk and exposed roots, to determine the height as a surrogate of the difference between the historical and recent relief. In three plots in southern Spain, the height of relic tree mounds was measured in olive trees at the upper and bottom parts to determine soil profile truncation. The results were compared and validated with manual measurements (ground truth values). Olive trees were grouped into high, moderate, and low slope gradient classes. The results showed, in all cases, high consistency in the correlation equations (Pearson’s coefficients over 0.95) between the estimated values in the models and the actual values measured in the olive trees. Consequently, these excellent results indicate the potential of this low-budget system for the study of historical erosion. Notably, the Kinect v2 can generate 3D reconstructions of tree mounds at microtopographic scales in outdoor situations that would be challenging for other depth cameras under variable lighting conditions, as found outdoors.

Funder

OAPN

AEI

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3