Effects of NAA and Ecklonia maxima Extracts on Lettuce and Tomato Transplant Production

Author:

Moncada AlessandraORCID,Vetrano Filippo,Esposito Alessandro,Miceli AlessandroORCID

Abstract

Ecklonia maxima and the commercial biostimulants produced from it contain various plant growth regulators that are responsible for the growth stimulation recorded in many crops. Auxins are one of the major plant growth regulators contained in E. maxima extracts. The aim of this research was to evaluate the growth-promoting effect of a seaweed extract from E. maxima on lettuce and tomato transplant production under nursery conditions, and to compare the effect of this extract with an equal concentration of synthetic auxin. Two doses of natural or synthetic exogenous auxins (50 or 100 μg L−1) were supplied to the substrate through the irrigation water with an ebb and flow system, 4, 11, and 18 days after sowing. A commercial biostimulant based on E. maxima extract was used as a source of natural auxin, while 1-naphthaleneacetic acid (NAA) was used as a synthetic auxin. Seedlings supplied only with water were used as a control. Tomato seedlings treated with 100 μg L−1 of natural auxins from E. maxima extract produced the tallest plants (+22%), with a higher leaf number (+12%), a wider leaf area (+44%), and a stronger stem (+12%), whereas lettuce seedling growth was promoted by all the treatments, but with a greater effect with increasing auxin supplementation and when using E. maxima extract, compared to NAA. The results showed that the supplementation of exogenous synthetic auxin (NAA), or an E. maxima extract containing natural auxins, can have a growth-promoting effect on lettuce and tomato seedlings. This effect was more evident on lettuce than tomato. The biostimulant produced from E. maxima extracts improved seedling quality and promoted shoot and root growth more than the NAA used as a synthetic source of auxins.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3