Author:
Nicola Silvana,Cantliffe Daniel J.
Abstract
`South Bay' lettuce (Lactuca sativa L.) seedlings were grown in a greenhouse during winter, spring, and fall to investigate the effect of cell size and medium compression on transplant quality and yield. Four Speedling planter flats (1.9-, 10.9-, 19.3-, 39.7-cm3 cells) and two medium compression levels [noncompressed and compressed (1.5 times in weight)] were tested. The two larger cell sizes and compression of the medium led to increased plant shoot growth. Conversely, root weight ratio [RWR = (final root dry weight ÷ final total dry weight + initial root dry weight ÷ initial total dry weight) ÷ 2] was highest with the smaller cells without medium compression. Lettuce transplants were field-grown on sand and muck soils. The larger cells delayed harvest by >2 weeks for plants grown on muck soil, but yield was unaffected. When grown on sandy soil, earliness was enhanced from plants grown in 19- and 40-cm3 cells, but head weights were not affected in the spring planting. In fall, heads were heavier for plants grown in 11-, 19-, or 40-cm3 cells compared with those from 2-cm3 cells. On sandy soil, harvest was delayed 13 days in spring and 16 days in fall for plants grown in the smallest cell size. Using the two smaller cell sizes saved medium and space in the greenhouse and increased the root growth ratio, but it led to reduced plant growth compared to using the bigger cells. Yield and earliness were more related to season and soil type than to transplant quality. On sandy soil, plants grown in 2- and 11-cm3 cells matured later, and yield was significantly decreased (8.6%) in fall by using plants from the 2-cm3 cells compared to the other sizes. From our results, compressing the medium in the cells was not justified because it is more costly and did not benefit yield in the field.
Publisher
American Society for Horticultural Science
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献