Analysis of Four Delineation Methods to Identify Potential Management Zones in a Commercial Potato Field in Eastern Canada

Author:

Lajili Abdelkarim,Cambouris Athyna N.,Chokmani KaremORCID,Duchemin Marc,Perron Isabelle,Zebarth Bernie J.,Biswas AsimORCID,Adamchuk Viacheslav I.ORCID

Abstract

Management zones (MZs) are delineated areas within an agricultural field with relatively homogenous soil properties, and therefore similar crop fertility requirements. Consequently, such MZs can often be used for site-specific management of crop production inputs. This study evaluated the effectiveness of four classification methods for delineating MZs in an 8-ha commercial potato field located in Prince Edward Island, Canada. The apparent electrical conductivity (ECa) at two depths from a commercial Veris sensor were used to delineate MZs using three classification methods without spatial constraints (i.e., fuzzy k-means, ISODATA and hierarchical) and one with spatial constraints (i.e., spatial segmentation method). Soil samples (0.0–0.15 m depth) from 104 sampling points was used to measure soil physical and chemical properties and their spatial variation in the field were used as reference data to evaluate four delineation methods. Significant Pearson correlations between ECa and soil properties were obtained (0.22 < r < 0.85). The variance reduction indicated that two to three MZs were optimal for representing the field’s spatial variability of soil properties. For two MZs, most soil physical and chemical properties differed significantly between MZs for all four delineation methods. For three MZs, there was greater discrimination among MZs for several soil properties for the spatial segmentation-based method compared with other delineation methods. Moreover, consideration of the spatial coordinates of the data improved the delineation of MZs and thereby increased the number of significant differences among MZs for individual soil properties. Therefore, the spatial segmentation method had the greatest efficiency in delineation of MZs from statistical and agronomic perspectives.

Funder

Agriculture and Agri-Food Canada

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3