Vineyard Zoning and Vine Detection Using Machine Learning in Unmanned Aerial Vehicle Imagery

Author:

Gavrilović Milan1ORCID,Jovanović Dušan1ORCID,Božović Predrag2ORCID,Benka Pavel2ORCID,Govedarica Miro1ORCID

Affiliation:

1. Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia

2. Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia

Abstract

Precision viticulture systems are essential for enhancing traditional intensive viticulture, achieving high-quality results, and minimizing costs. This study explores the integration of Unmanned Aerial Vehicles (UAVs) and artificial intelligence in precision viticulture, focusing on vine detection and vineyard zoning. Vine detection employs the YOLO (You Only Look Once) deep learning algorithm, achieving a remarkable 90% accuracy by analysing UAV imagery with various spectral ranges from various phenological stages. Vineyard zoning, achieved through the application of the K-means algorithm, incorporates geospatial data such as the Normalized Difference Vegetation Index (NDVI) and the assessment of nitrogen, phosphorus, and potassium content in leaf blades and petioles. This approach enables efficient resource management tailored to each zone’s specific needs. The research aims to develop a decision-support model for precision viticulture. The proposed model demonstrates a high vine detection accuracy and defines management zones with variable weighting factors assigned to each variable while preserving location information, revealing significant differences in variables. The model’s advantages lie in its rapid results and minimal data requirements, offering profound insights into the benefits of UAV application for precise vineyard management. This approach has the potential to expedite decision making, allowing for adaptive strategies based on the unique conditions of each zone.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3