Long-Term P Fertilizer Application Reduced Methane Emissions from Paddies in a Double-Rice System

Author:

Zhu Xiangcheng,Li Jin,Liang Xihuan,Chen Yunfeng,Chen Xianmao,Ji Jianhua,Xia Wenjian,Lan Xianjin,Peng Chunrui,Chen JinORCID

Abstract

Rice is the main staple food worldwide, yet paddy fields are a primary source of artificial methane (CH4) emissions. Phosphorus (P) is a key element in the growth of plants and microbes, and P fertilizer input is a conventional agricultural practice adopted to improve rice yield. However, the impact of long-term P fertilizer addition on CH4 emissions in rice paddies is still unclear. To test this impact, a 36-yr field experiment with and without P fertilizer application treatments under a double-rice cropping system was used in this study to explore how continuous P application affects CH4 emissions and related plant and soil properties. The cumulative CH4 emissions were 21.2% and 28.6% higher without P fertilizer application treatment than with P fertilizer application treatment during the early and late season, respectively. Long-term P fertilizer application increased the rice aboveground biomass by 14.7–85.1% and increased grain yield by 24.5–138.7%. However, it reduced the ratio of root biomass to aboveground biomass. Long-term P fertilizer input reduced the soil NH4+ concentrations in both rice seasons but increased the soil DOC concentrations in the late season. The soil methanogenic abundance and CH4 production potential were similar without and with P fertilizer application treatments; however, the methanotrophic abundance and soil CH4 oxidation potential with P fertilizer application treatment were significantly higher than without P fertilizer application treatment. Our findings indicate that long-term P fertilizer input reduces CH4 emissions in rice fields, mainly by improving CH4 oxidation, which highlights the need for judicious P management to increase rice yield while reducing CH4 emissions.

Funder

National Natural Science Foundation of China

Collaborative Innovation Special Project of Jiangxi Modern Agricultural Research

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference57 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3