Effect of fertilizer composition and different varieties on yield, methane and nitrous oxide emission from rice field in East Java Indonesia

Author:

Slameto ,Fahrudin Danil Eka,Saputra Muhamad Wahyu

Abstract

IntroductionRice, as a staple food in several Asian countries, contributes to approximately 10% of greenhouse gas (GHG) emissions during its cultivation. Furthermore, nitrogen fertilization increases the accumulation of GHG emissions. This study aims to investigate GHG emissions, including methane (CH4) and nitrous Oxide (N2O) resulting from the common fertilizer variations used by farmers in Indonesia for two rice varieties, Way Apo Buru and Inpari 32, and their relationship to rice yield. MethodsThe research was conducted from August to November 2022 in an open field located in Jember, Indonesia. Two rice varieties, Inpari 32 and Way Apo Buru, were employed in this study. Fertilization variations included Urea (46%-N), ZA (21%-N 24%-S), SP-36 (36%-P & 5%-S), KCl (250:100:50:50 kg ha-1) (P1); NPK (16%-N:16%-P:16%-K), Urea (46%-N), ZA (21%-N & 24%-S) (225:175:100 kg ha-1) (P2); NPK (12%-N:12%-P:17%-K), Urea (46%-N), ZA (21%-N & 24%-S) (175:150:100 kg ha-1) (P3); and NPKS (P1) + chicken manure fertilizer 5 tonnes ha-1 (P4).ResultsIn this research, Inpari 32 rice achieved greater yields while also exhibiting higher global warming potential. Applying NPKS fertilizer in combination with 5 tonnes ha-1 of manure fertilizer (referred to as P4) resulted in a substantial increase in rice yield compared to alternative fertilizer formulations. DiscussionsThe various inorganic fertilizers had a relatively similar influence on growth, production yield, and greenhouse gas emissions (CH4 and N2O). However, the fertilizer NPKS and 5 tonnes manure fertilizer resulted in the lowest CH4 emissions and global warming potential values.

Publisher

Frontiers Media SA

Reference54 articles.

1. Long-term manure application enhances organic carbon and nitrogen stocks in Mollisol subsoil;Abrar;Land Degradation Dev.,2023

2. Effect of organic matter on nitrogen mineralization in flooded and dry soil;Anggria;ARPN J. Agric. Biol. Sci.,2012

3. Characteristics of rice plant with low methane emission;Ardiarini;Ecology Environment COnservartion,2020

4. Soil and microbial biomass stoichiometry regulate soil organic carbon and nitrogen mineralization in rice-wheat rotation subjected to long-term fertilization;Ashraf;J. Soils Sediments,2020

5. Exploring the relationships between greenhouse gas emissions, yields, and soil properties in cropping systems;Behnke;Agriculture,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3