Impact of Tea Tree Cultivation on Soil Microbiota, Soil Organic Matter, and Nitrogen Cycling in Mountainous Plantations

Author:

Shao Shuaibo12,Li Yuanping23,Li Zhongwei4,Ma Xiaoxiao4,Zhu Yanqi2,Luo Yuqing2,Cai Pumo2ORCID,Jia Xiaoli2ORCID,Rensing Christopher3,Li Qisong2

Affiliation:

1. College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China

2. College of Tea and Food, Wuyi University, Wuyishan 354300, China

3. Institute of Environmental Microbiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China

4. College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China

Abstract

This study focused on examining the early stages of tea cultivation (1, 3, and 5 years) in mountainous tea plantations. It specifically aimed to investigate the changes in soil micro-ecology at different locations (inter-row, terrace surfaces, and terrace walls). It was revealed that as tea tree cultivation progressed over the years, bacterial diversity and co-occurrence networks annually decreased in different locations. The results of soil physicochemical index analysis showed that the soil’s available nutrients and the activities of cellulase and protease increased. Furthermore, the amplitude of variation of these indexes in the inter-row soil was significantly higher than that on the terrace surfaces and the terrace walls (p < 0.05). Alterations occurred in the soil microbial community structure, with an enrichment of bacterial genera such as Sinomonas, Granulicella, and Sphingomonas, as well as fungal genera such as Trichoderma, Penicillium, and Talaromyces; an increase in the proportion of plant pathogenic fungi (Cladosporium, Fusarium, and Curvularia) was observed in the inter-row soil. The results of soil microbial function prediction showed that nitrification and nitrogen fixation decreased, but denitrification increased (p < 0.05). In conclusion, cultivating tea trees in mountainous terraced plantations significantly impacted the soil microbial community, accelerated the metabolism of soil organic matter, disrupted soil nitrogen cycling functions, and increased the presence of plant pathogenic fungal pathogens. Moreover, the changes in the structure and functions of the soil microbial community demonstrate a spatial distance effect across different terrace locations.

Funder

Nanping City science and technology plan project assignment

Central government guiding local science and technology development projects

Innovative Training Program for College Students

Nanping city science and technology plan project

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3