Determining Irrigation Volumes for Enhancing Profit and N Uptake Efficiency of Potato Using WASH_2D Model

Author:

Liang ShuoshuoORCID,Abd El Baki Hassan M.ORCID,An PingORCID,Fujimaki HaruyukiORCID

Abstract

Soaring food prices and the intensified scarcity of water resources put a new emphasis on efficient use of water in irrigation. Numerical models for water flow and crop growth can be used to predict crop water stress and make decisions on irrigation management. To this end, a new irrigation scheme was presented to determine the optimum irrigation depths using WASH_2D, a numerical model of water flow and solute transport in soils and crop growth. By using freely available quantitative weather forecasts and volumetric water price as input data to predict soil water flow and give the recommendation of irrigation depths which maximizes net income during each irrigation interval. Field experiments using potato were conducted for two-seasons in a sandy soil in Japan under three irrigation methods, i.e., using the simulation model named treatment “S” (to distinguish, named S1 in first season and S2 in second season), automatic irrigation method using soil moisture sensors named treatment “A”, and refilling irrigation management supplying 100% consumed water named treatment “R”. To compare S with other two treatments, S1 and A was conducted in the first season, then S2 and R was conducted in the second season. Results showed that S1 improved potato yield by 19%, and reduced water by 28%, resulting in an increased net income by 19% compared with A in the first season. There was no significant difference when compared with R in the second season, which was mainly due to the frequent rainfall during second growing season. In addition, S improved the nitrogen uptake efficiency (NUPE) by 39% and 11% compared with A and R, respectively. The simulated values of water content were in fair agreement with those measured in the root zone. In short, simulated irrigation method was effective in improving yield, saving water and increasing NUPE of potato compared with automatic and refilling irrigation methods in sandy field.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3