Application of Parallel Factor Analysis (PARAFAC) to the Regional Characterisation of Vineyard Blocks Using Remote Sensing Time Series

Author:

Lopez-Fornieles Eva,Brunel GuilhemORCID,Devaux Nicolas,Roger Jean-MichelORCID,Taylor James,Tisseyre Bruno

Abstract

Monitoring wine-growing regions and maximising the value of production based on their region/local specificities requires accurate spatial and temporal monitoring. The increasing amount and variability of information from remote sensing data is a potential tool to assess this challenge for the grape and wine industry. This article provides a first insight into the capacity of a multiway analysis method applied to Sentinel-2 time series to assess the value of simultaneously considering spectral and temporal information to highlight site-specific canopy evolution in relation to environmental factors and management practices, which present a large diversity at this regional scale. Parallel Factor Analysis (PARAFAC) was used as an unsupervised technique to recover pure spectra and temporal signatures from multi-way spectral imagery of vineyards in the Languedoc-Roussillon region in the south of France. The model was developed using a time series of Sentinel-2 satellite imagery collected over 4978 vineyard blocks between May 2019 and August 2020. From the Sentinel-2 (spectral and temporal) signal, the PARAFAC analysis allowed the identification of spectral and temporal profiles in the form of pure components, which corresponded to vegetation and soil. The PARAFAC analysis also identified that two of the pure spectra were strongly related to characteristics and dynamics of vineyard cultivation at a regional scale. A conceptual framework was proposed in order to simultaneously consider both vegetation and soil profiles and to summarise the mass of data accordingly. This methodology allowed the computation of a concentration index that characterised how close a field was to a vegetation or a soil profile over the season. The concentration indices were validated for the vegetation and the soil over two growing seasons (2019 and 2020) with geostatistical analysis. A non-random distribution of the concentration index at the regional scale was assumed to highlight a strongly spatially organised phenomenon related to spatially organised environmental factors (soil, climate, training system, etc.). In a second step, spatial patterns of indices were subjected to the expertise of a panel of advisors of the wine industry in order to validate them in relation to vine-growing conditions. Results showed that the introduction of the PARAFAC method opened up the possibility to identify relevant spectro-temporal profiles for vine monitoring purposes.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3