Influence of Tillage Systems, and Forms and Rates of Nitrogen Fertilizers on CO2 and N2O Fluxes from Winter Wheat Cultivation in Oklahoma

Author:

Kandel Tanka P.ORCID,Gowda Prasanna H.ORCID,Northup Brian K.

Abstract

Cultivation of winter wheat under reduced tillage systems is increasing in the U.S. Southern Great Plains. Likewise, there is revived interest for including summer legumes in monocultures of winter wheat as green sources of nitrogen (N). This study investigated the influence of tillage systems (no- and conventional tillage), and source and rates of N fertilizer (0, 45 and 90 kg N ha−1 yr−1 in inorganic N fertilizer, and cowpea as green manure) on emissions of carbon dioxide (CO2) and nitrous oxide (N2O) from winter wheat cultivation. The study was conducted within a long-term field experiment initiated in 2011, at upland and bottomland sites near El Reno, Oklahoma during the 2016–2017 growing season of winter wheat. The experiment was conducted site-wise as split-plots in a completely randomized design, with N treatment as main plots and tillage system as subplots. Thus, there were a total of eight treatment combinations with three replicated plots (4 m × 10 m) in each combination in both sites. Net ecosystem exchange (NEE) of CO2 was measured by a closed chamber connected to an infra-red gas analyzer, and fluxes were partitioned to gross primary production (GPP) and ecosystem respiration (ER). Heterotrophic soil respiration (SR) was measured on bare soil spots. Fluxes of N2O were measured with an opaque closed chamber system with a portable gas analyzer. Dynamics of canopy CO2 fluxes (NEE, GPP and ER) were similar between tillage systems, while canopy CO2 fluxes increased with rate of N fertilization. Canopy CO2 fluxes from cowpea and an unfertilized control were similar, and the lowest, due to poor growth of winter wheat compared to the N fertilized treatments. Fluxes of N2O approximated zero from all treatments throughout the study and no response of N fertilizer or tillage system was seen. In conclusion, the results from this study indicated that canopy fluxes of CO2 from winter wheat are controlled by forms and rates of N fertilizers rather than tillage systems.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3