Side Lighting Enhances Morphophysiology and Runner Formation by Upregulating Photosynthesis in Strawberry Grown in Controlled Environment

Author:

Yang JingliORCID,Song JinnanORCID,Jeong Byoung RyongORCID

Abstract

The significant effects of lighting on plants have been extensively investigated, but research has rarely studied the impact of different lighting directions for the strawberry plant. To understand the optimal lighting direction for better growth and development, this study investigated how strawberries respond to variations in the lighting direction to help fine-tune the growth environment for their development. We examined how the lighting direction affects plant morphophysiology by investigating plant growth parameters, leaf anatomy, epidermal cell elongation, stomatal properties, physiological characteristics, and expressions of runner induction-related genes (FaSOC1 and FaTFL1) and gibberellin (GA) biosyntheses-related genes (FaGA20ox2 and FaGA20ox4). In closed-type plant factory units, the rooted cuttings of strawberry (Fragaria × ananassa Duch.) ‘Suhlyang’ were subjected to a 10-h photoperiod with a 350 μmol∙m−2∙s−1 photosynthetic photon flux density (PPFD) provided by light-emitting diodes (LEDs) from three directions relative to the plants: top, side, and bottom. Our results demonstrated that the side lighting profoundly promoted not only morphophysiology, but also runner formation, by upregulating photosynthesis in strawberries. Side lighting can bring commercial benefits, which include reduced economic costs, easier controllability, and harmlessness to plants. This will help provide new insights for the propagation of the most commonly cultivated strawberries in South Korea.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3