Prolonged Post-Harvest Preservation in Lettuce (Lactuca sativa L.) by Reducing Water Loss Rate and Chlorophyll Degradation Regulated through Lighting Direction-Induced Morphophysiological Improvements

Author:

Yang Jingli12ORCID,Song Jinnan12ORCID,Liu Jie1,Dong Xinxiu1,Zhang Haijun1,Jeong Byoung Ryong3ORCID

Affiliation:

1. Weifang Key Laboratory for Stress Resistance and High Yield Regulation of Horticultural Crops, Shandong Provincial University Laboratory for Protected Horticulture, College of Jia Sixie Agriculture, Weifang University of Science and Technology, Shouguang 262700, China

2. Department of Horticulture, Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University, Jinju 52828, Republic of Korea

3. Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea

Abstract

To investigate the relationship between the lighting direction-induced morphophysiological traits and post-harvest storage of lettuce, the effects of different lighting directions (top, T; top + side, TS; top + bottom, TB; side + bottom, SB; and top + side + bottom, TSB; the light from different directions for a sum of light intensity of 600 μmol·m−2·s−1 photosynthetic photon flux density (PPFD)) on the growth morphology, root development, leaf thickness, stomatal density, chlorophyll concentration, photosynthesis, and chlorophyll fluorescence, as well as the content of nutrition such as carbohydrates and soluble proteins in lettuce were analyzed. Subsequently, the changes in water loss rate, membrane permeability (measured as relative conductivity and malondialdehyde (MDA) content), brittleness (assessed by both brittleness index and β-galactosidase (β-GAL) activity), and yellowing degree (evaluated based on chlorophyll content, and activities of chlorophyllase (CLH) and pheophytinase (PPH)) were investigated during the storage after harvest. The findings indicate that the TS treatment can effectively reduce shoot height, increase crown width, enhance leaves’ length, width, number, and thickness, and improve chlorophyll fluorescence characteristics, photosynthetic capacity, and nutrient content in lettuce before harvest. Specifically, lettuce’s leaf thickness and stomatal density showed a significant increase. Reasonable regulation of water loss in post-harvested lettuce is essential for delaying chlorophyll degradation. It was utilized to mitigate the increase in conductivity and hinder the accumulation of MDA in lettuce. The softening speed of leafy vegetables was delayed by effectively regulating the activity of the β-GAL. Chlorophyll degradation was alleviated by affecting CLH and PPH activities. This provides a theoretical basis for investigating the relationship between creating a favorable light environment and enhancing the post-harvest preservation of leafy vegetables, thus prolonging their post-harvest storage period through optimization of their morphophysiological phenotypes.

Funder

The Weifang University of Science and Technology High-level Talent Research start-up fund project

Ministry of Education, Republic of Korea

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3