Machine Learning-Based Processing of Multispectral and RGB UAV Imagery for the Multitemporal Monitoring of Vineyard Water Status

Author:

López-García Patricia,Intrigliolo DiegoORCID,Moreno Miguel A.ORCID,Martínez-Moreno AlejandroORCID,Ortega José FernandoORCID,Pérez-Álvarez Eva Pilar,Ballesteros RocíoORCID

Abstract

The development of unmanned aerial vehicles (UAVs) and light sensors has required new approaches for high-resolution remote sensing applications. High spatial and temporal resolution spectral data acquired by multispectral and conventional cameras (or red, green, blue (RGB) sensors) onboard UAVs can be useful for plant water status determination and, as a consequence, for irrigation management. A study in a vineyard located in south-eastern Spain was carried out during the 2018, 2019, and 2020 seasons to assess the potential uses of these techniques. Different water qualities and irrigation application start throughout the growth cycle were imposed. Flights with RGB and multispectral cameras mounted on a UAV were performed throughout the growth cycle, and orthoimages were generated. These orthoimages were segmented to include only vegetation and calculate the green canopy cover (GCC). The stem water potential was measured, and the water stress integral (Sψ) was obtained during each irrigation season. Multiple linear regression techniques and artificial neural networks (ANNs) models with multispectral and RGB bands, as well as GCC, as inputs, were trained and tested to simulate the Sψ. The results showed that the information in the visible domain was highly related to the Sψ in the 2018 season. For all the other years and combinations of years, multispectral ANNs performed slightly better. Differences in the spatial resolution and radiometric quality of the RGB and multispectral geomatic products explain the good model performances with each type of data. Additionally, RGB cameras cost less and are easier to use than multispectral cameras, and RGB images are simpler to process than multispectral images. Therefore, RGB sensors are a good option for use in predicting entire vineyard water status. In any case, field punctual measurements are still required to generate a general model to estimate the water status in any season and vineyard.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference61 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3