Estimation of Potato Chlorophyll Content from UAV Multispectral Images with Stacking Ensemble Algorithm

Author:

Yang Huanbo,Hu Yaohua,Zheng ZhouzhouORCID,Qiao Yichen,Zhang Kaili,Guo Taifeng,Chen Jun

Abstract

Rapid and accurate crop chlorophyll content estimation is crucial for guiding field management and improving crop yields. This study explored the potential for potato chlorophyll content estimation based on unmanned aerial vehicle (UAV) multispectral imagery. To search the optimal estimation method, three parts of research were conducted as following. First, a combination of support vector machines (SVM) and a gaussian mixture model (GMM) thresholding method was proposed to estimate fractional vegetation cover (FVC) during the potato growing period, and the proposed method produced efficient estimates of FVC; among all the selected vegetation indices (VIs), the soil adjusted vegetation index (SAVI) had the highest accuracy. Second, the recursive feature elimination (RFE) algorithm was utilized to screen the VIs and texture features derived from multispectral images: three Vis, including modified simple ratio (MSR), ratio vegetation index (RVI) and normalized difference vegetation index (NDVI); three texture features, including correlation in the NIR band (corr-NIR), correlation in the red-edge band (corr-Red-edge) and homogeneity in the NIR band (hom-NIR), showed higher contribution to chlorophyll content estimation. Finally, a stacking model was constructed with K-Nearest Neighbor (KNN), a light gradient boosting machine (light-GBM), SVM algorithm as the base model and linear fitting as the metamodel, and four machine learning algorithms (SVM, KNN, light-GBM and stacking) were used to build the chlorophyll content estimation model suitable for different growing seasons. The results were: (1) The performance of the estimation model could be improved based on both VIs and texture features over using single-type features, and the stacking algorithm yielded the highest estimation accuracy with an R2 value of 0.694 and an RMSE value of 0.553; (2) When FVC was added, the estimation model accuracy was further improved, and the stacking algorithm also produced the highest estimation accuracy with R2 value of 0.739, RMSE value of 0.511 (3) When comparing modeling algorithms, stacking algorithms had greater advantages in the estimation chlorophyll content with potato plants than using single machine learning algorithms. This study indicates that taking into account the combination of VIs reflecting spectral characteristics, texture features reflecting spatial information and the FVC reflecting canopy structure properties can accomplish higher chlorophyll content estimation accuracy, and the stacking algorithm can integrate the advantages of a single machine learning model, with great potential for estimation of potato chlorophyll content.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3