The Impact of Forest Fungi on Promoting Growth and Development of Brassica napus L.

Author:

Dąbrowska Grażyna B.ORCID,Garstecka Zuzanna,Trejgell Alina,Dąbrowski Henryk P.,Konieczna WiktoriaORCID,Szyp-Borowska Iwona

Abstract

Inoculation of plants with fungi has been shown to increase yields by improving germination, seedling vigor, plant growth, root morphogenesis, photosynthesis, and flowering through direct or indirect mechanisms. These mechanisms include solubilization and mineralization of nutrients, facilitating their uptake by plants, regulation of hormone balance, production of volatile organic compounds and microbial enzymes, suppression of plant pathogens, and mitigation of abiotic stresses. In the presented experiments, the effect of selected forest soil fungi on the growth and development of Brassica napus L. seedlings was investigated. Inoculation was carried out in vivo and in pot experiments with ectomycorrhizal fungi typical for forest soils: Collybia tuberosa, Clitocybe sp., Laccaria laccata, Hebeloma mesophaeum, and Cyathusolla. It was shown that all analyzed fungi produced IAA. In the in vitro experiment, B. napus inoculated with L. laccata showed stimulated root growth and greater number of leaves compared to control plants. A similar stimulatory effect on lateral root formation was observed in cuttings grown in pots in the presence of the C. olla fungus. In the pot experiment, the seedlings inoculated with the L. laccata fungus also showed increased growth of shoots and biomass. The effect of inoculation with the tested fungal strains, especially C. olla, on the growth and development of oilseed rape was probably indirect, as it also contributed to an increase in the number of microorganisms, especially soil bacteria. The expression of the metallothioneins in B. napus (BnMT1-BnMT3) varied depending on the fungal species. The presence of C. olla significantly increased BnMT2 expression in oilseed rape. It was found that BnMT1 expression increased and BnMT3 transcripts decreased in plants growing in the presence of L. laccata. This indicates the involvement of BnMT in the adaptation of oilseed rape to growth in fungi presence.

Funder

Nicolaus Copernicus University

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3