The Contribution of Trichoderma viride and Metallothioneins in Enhancing the Seed Quality of Avena sativa L. in Cd-Contaminated Soil

Author:

Konieczna Wiktoria12ORCID,Turkan Sena1ORCID,Warchoł Marzena3ORCID,Skrzypek Edyta3ORCID,Dąbrowska Grażyna B.1ORCID,Mierek-Adamska Agnieszka12ORCID

Affiliation:

1. Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland

2. Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland

3. The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland

Abstract

Pollution of arable land with heavy metals is a worldwide problem. Cadmium (Cd) is a toxic metal that poses a severe threat to humans’ and animals’ health and lives. Plants can easily absorb Cd from the soil, and plant-based food is the main means of exposure to this hazardous element for humans and animals. Phytoremediation is a promising plant-based approach to removing heavy metals from the soil, and plant growth-promoting micro-organisms such as the fungi Trichoderma can enhance the ability of plants to accumulate metals. Inoculation of Avena sativa L. (oat) with Trichoderma viride enhances germination and seedling growth in the presence of Cd and, in this study, the growth of 6-month-old oat plants in Cd-contaminated soil was not increased by inoculation with T. viride, but a 1.7-fold increase in yield was observed. The content of Cd in oat shoots depended on the Cd content in the soil. Still, it was unaffected by the inoculation with T. viride. A. sativa metallothioneins (AsMTs) participate in plant–fungi interaction, however, their role in this study depended on MT type and Cd concentration. The inoculation of A. sativa with T. viride could be a promising approach to obtaining a high yield in Cd-contaminated soil without increasing the Cd content in the plant.

Funder

NCU

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3