Fruit Crop Species with Agrivoltaic Systems: A Critical Review

Author:

Magarelli Andrea1ORCID,Mazzeo Andrea1,Ferrara Giuseppe1ORCID

Affiliation:

1. Department of Soil, Plant and Food Science, University of Bari ‘Aldo Moro’, Via Amendola 165, 70126 Bari, Italy

Abstract

As the world seeks alternatives to fossil fuels, agrivoltaics offer a promising solution by integrating solar panels with farming practices. This review examines three key agrivoltaic setups—static tilted, full-sun tracking, and agronomic tracking—dissecting their engineering features’ roles in optimizing both the electricity yield and the fruit productivity of some fruit crops. We emphasize the microclimatic modifications induced by agrivoltaic systems, mainly encompassing changes in solar radiation, air temperature, humidity, and wind. The data collected in this survey reveal a strong spatial heterogeneity distribution over different locations and a significant influence on fruit crops’ growth, yield, and quality, with variations among species. Such findings on the overall performance recommend a 30% shading threshold to prevent substantial declines in fruit characteristics, i.e., fruit yield and quality. Shading conditions over this threshold influence the leaf morphophysiological characteristics, impacting the photosynthesis capacity and fruit dry matter accumulation. This emphasizes the importance of further investigation into spectral radiation quality and carbon assimilation kinetics as daily responses for different fruit species to be cultivated in such new environments. Starting from this point, this review underscores the need to extend studies on various fruit crops, particularly those cultivated in semi-arid horticultural regions (i.e., for saving water), and suggests the use of comprehensive and standardized indicators for comparability across studies. Finally, the authors conclude that engineering improvements, along with new research programs on agrivoltaic systems, could lead to agricultural, environmental, and economic sustainability, as well as their practical implementation and attractiveness to farmers in the coming years.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3