Evaluating the Impacts of Waterlogging Disasters on Wheat and Maize Yields in the Middle and Lower Yangtze River Region, China, by an Agrometeorological Index

Author:

Wang Xinhui1,Qian Long2ORCID,Dong Chunyu2ORCID,Tang Rong3

Affiliation:

1. School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan 430072, China

2. School of Civil Engineering, Sun Yat-sen University, Guangzhou 510275, China

3. College of Water Resource and Civil Engineering, Hunan Agricultural University, Changsha 410125, China

Abstract

Waterlogging disasters severely restrict crop production. The middle and lower Yangtze River region (MLYRR) is an important grain-producing region in China but suffers from severe waterlogging disasters. In this study, an agriculture-specific index called the accumulative humidity index was introduced to analyze the spatiotemporal characteristics of waterlogging during different wheat and maize growth stages in the MLYRR from 1960 to 2020. Additionally, the relationships between waterlogging intensities and crop yield fluctuations were revealed. The results showed that over the past 60 years, the intensity of wheat and maize waterlogging in the central and eastern MLYRR have increased; crop waterlogging was more intense in the 1990s–2010s than during the 1960s–1980s, and waterlogging intensity peaked in the 1990s. For both crops, waterlogging was more intense during the early growth stages, but its yield-reducing impacts were more significant during middle and late growth stages. The southern MLYRR (especially southern Anhui) was the region where both crops were most prone to waterlogging, but yields in this region were not severely affected by waterlogging. Compared with wheat, maize was more prone to waterlogging, and its yield was more significantly reduced by waterlogging. In conclusion, this study provides guidance for agricultural waterlogging risk reduction in the MLYRR.

Funder

Natural Science Foundation of Guangdong Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3