Spatial Heterogeneity in the Response of Winter Wheat Yield to Meteorological Dryness/Wetness Variations in Henan Province, China

Author:

Li Cheng1,Gu Yuli1,Xu Hui2,Huang Jin3,Liu Bo4,Chun Kwok Pan5,Octavianti Thanti5

Affiliation:

1. Department of Ecology, School of Plant Protection, Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China

2. Nanjing Municipal Academy of Ecological and Environmental Protection Science, Nanjing 210013, China

3. School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China

4. College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, China

5. CATE School of Architecture and Environment, University of the West of England, Bristol BS16 1QY, UK

Abstract

Knowledge of the responses of winter wheat yield to meteorological dryness/wetness variations is crucial for reducing yield losses in Henan province, China’s largest winter wheat production region, under the background of climate change. Data on climate, yield and atmospheric circulation indices were collected from 1987 to 2017, and monthly self-calibrating Palmer drought severity index (sc-PDSI) values were calculated during the winter wheat growing season. The main results were as follows: (1) Henan could be partitioned into four sub-regions, namely, western, central-western, central-northern and eastern regions, based on the evolution characteristics of the time series of winter wheat yield in 17 cities during the period of 1988–2017. Among them, winter wheat yield was high and stable in the central-northern and eastern regions, with a remarkable increasing trend (p < 0.05). (2) The sc-PDSI in February had significantly positive impacts on climate-driven winter wheat yield in the western and central-western regions (p < 0.05), while the sc-PDSI in December and the sc-PDSI in May had significantly negative impacts on climate-driven winter wheat yield in the central-northern and eastern regions, respectively (p < 0.05). (3) There were time-lag relationships between the sc-PDSI for a specific month and the atmospheric circulation indices in the four sub-regions. Furthermore, we constructed multifactorial models based on selected atmospheric circulation indices, and they had the ability to simulate the sc-PDSI for a specific month in the four sub-regions. These findings will provide scientific references for meteorological dryness/wetness monitoring and risk assessments of winter wheat production.

Funder

National Natural Science Foundation of China

Royal Society International Exchanges 2022

Young Scientific and Technological Talents Support Project of Jiangsu Association for Science and Technology

Humanities and Social Sciences Foundation of Yangzhou University

Qinglan Project of Yangzhou University

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3