Global Drought-Wetness Conditions Monitoring Based on Multi-Source Remote Sensing Data

Author:

Wei Wei1ORCID,Wang Jiping1ORCID,Ma Libang1ORCID,Wang Xufeng2ORCID,Xie Binbin3,Zhou Junju1,Zhang Haoyan1

Affiliation:

1. College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China

2. Key Laboratory of Remote Sensing of Gansu Province, Heihe Remote Sensing Experimental Research Station, Northwest Institute of Eco-Environmental and Resources, Chinese Academy of Sciences, Lanzhou 730000, China

3. School of Urban Economics and Tourism Culture, Lanzhou City University, Lanzhou 730070, China

Abstract

Drought is a common hydrometeorological phenomenon and a pervasive global hazard. To monitor global drought-wetness conditions comprehensively and promptly, this research proposed a spatial distance drought index (SDDI) which was constructed by four drought variables based on multisource remote sensing (RS) data, including the normalized difference vegetation index (NDVI), land surface temperature (LST), soil moisture (SM), and precipitation (P), using the spatial distance model (SDM). The results showed that the consistent area of SDDI with the 1-month and 3-month standardized precipitation-evapotranspiration index (SPEI1 and SPEI3), and the self-calibrating Palmer drought severity index (scPSDI) accounted for 85.5%, 87.3%, and 85.1% of the global land surface area, respectively, indicating that the index can be used to monitor global drought-wetness conditions. Over the past two decades (2001–2020), a discernible spatial distribution pattern has emerged in global drought-wetness conditions. This pattern was characterized by the extreme drought mainly distributed deep within the continent, surrounded by expanding moderate drought, mild drought, and no drought areas. On the annual scale, the global drought-wetness conditions exhibited an upward trend, while on the seasonal and monthly scales, it fluctuated steadily within a certain cycle. Through this research, we found that the sensitive areas of drought-wetness conditions were mainly found on the east coast of Australia, the Indus Basin of the Indian Peninsula, the Victoria and Katanga Plateau areas of Africa, the Mississippi River Basin of North America, the eastern part of the Brazilian Plateau and the Pampas Plateau of South America.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3