Effects of Morphological and Anatomical Characteristics of Banana Crown Vascular Bundles on Cutting Mechanical Properties Using Multiple Imaging Methods

Author:

Zhao Lei,Yang Haijun,Xie Heng,Duan JieliORCID,Jin Mohui,Fu Han,Guo JieORCID,Xu ZeyuORCID,Jiang Tingting,Yang Zhou

Abstract

To obtain the appropriate mechanized cutting region for banana dehanding, the methods of X-ray Computed Tomography (CT), Paraffin-embedded tissue section, and scanning electron microscopy (SEM) were adopted to observe the morphological and anatomical characteristics of vascular bundles of the banana crown. The results indicated that the crown can be divided into three regions, viz., the central stalk–crown transition region (CSCTR), the crown expansion region (CER), and the crown–finger transition region (CFTR). According to the obtained characteristics, the cutting mechanical properties are found to be affected by the relative angle between the vascular bundle and cutter (RAVBC) and the vascular bundle density. In CSCTR, due to the opposite change of RAVBC and density, the cutting mechanical properties become unstable and the cutting energy decreases gradually from 4.30 J to 2.57 J. While in CER, the cutting mechanical properties tend to be stable, and the cutting energy varies in a small range (2.83–2.92 J), owing to the small changes of RAVBC and density. When the vascular bundles cross from the CER to CFTR, the cutting energy increases with the increase of RAVBC and density, which varies from 3.37 to 4.84 J. Accordingly, the appropriate cutting region for dehanding, which can reduce the energy consumption and improve the cutting efficiency, is ascertained to be between CSCTR and CER.

Funder

National Natural Science Foundation of China

Agriculture Research System of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3