Optimizing Nutrient and Energy Efficiency in a Direct-Seeded Rice Production System: A Northwestern Punjab Case Study

Author:

Kaur Ranjot1,Chhina Gurbax Singh1,Kaur Mandeep1,Bhatt Rajan2ORCID,Elhindi Khalid M.3,Mattar Mohamed A.4ORCID

Affiliation:

1. P.G. Department of Agriculture, Khalsa College Amritsar, Amritsar 143002, Punjab, India

2. PAU-Krishi Vigyan Kendra, Amritsar 143601, Punjab, India

3. Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia

4. Department of Agricultural Engineering, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia

Abstract

This study was carried out in Amritsar, Punjab, to find out how efficiently nutrients were used and how much energy was employed in direct-seeded rice (DSR) production. In this study, four levels of nitrogen (0, 40, 50, and 60 kg N ha−1) and three levels of phosphorus (0, 37.5, and 45 kg P2O5 ha−1) were tested. In a rice production system, the energy indices of various inputs and outputs were evaluated through the application of energy equivalency. The nutrient-use efficiencies in rice were assessed using different efficiency indices. The maximum grain yields of 38.9 q ha−1 and 36.9 q ha −1 were recorded at 50 kg N ha−1 and 45 kg P2O5 ha−1, respectively. On the other hand, application of nitrogen at 60 kg N ha−1 and phosphorus at 45 kg P2O5 ha−1 resulted in maximum straw yield of 57.1 q ha−1 and 51.1 q ha−1, respectively. In comparison with the control, application of 60 and 50 kg N ha−1 resulted in 161.9% and 151.0% higher grain yield, respectively. On the other hand, with applications of 45 kg P2O5 ha−1 and 37.5 kg P2O5 ha−1, an increase in the grain yield of 17.3 and 28.6%, respectively, over the control was recorded. Moving further towards nutrient-use efficiencies (NUEs), the highest values of partial factor productivity of nitrogen (PFPN), agronomic efficiency of nitrogen (AEN), partial nutrient balance of nitrogen (PNBN), and recovery efficiency of nitrogen (REN) were 89.1, 50.4, 1.78 and 0.72, respectively, which were obtained at 40 kg N ha−1, after which the values started decreasing steadily. In the case of phosphorus, the partial factor productivity (PFPP) of 88.6 was the maximum at 37.5 kg P2O5 ha−1, but partial nutrient balance (PNBP) of 0.36 and recovery efficiency (REP) of 0.08 were highest at 45 kg P2O5 ha−1. The main results revealed that the farmer field had an excessive amount of non-renewable energy inputs. The experimental field depicted greater energy-usage efficiency (EUE) of 4.5, energy productivity (EP) of 0.14, and energy profitability (EP1) of 3.5. These results were primarily ascribed to a significant drop in energy inputs under direct-seeded rice (DSR). In the case of non-renewable energy inputs, fertilizer made the maximum contribution to energy input (47.9%) in the farmer’s field. We conclude that nutrient-use efficiencies and energy-use efficiency were highest at 50 kg N and 45 kg P2O5 ha−1. This recommendation is beneficial for farmers because lower inputs and higher outputs are the main objective of every farmer.

Funder

King Saud University, Riyadh, Saudi Arabia

Publisher

MDPI AG

Reference56 articles.

1. Energy requirement of different weed management practices for aerobic rice in India;Chaudhary;Ama Agr. Mech. Asia Afr. Lat. Am.,2008

2. Controlled release fertilizers to increase efficiency of nutrient use and minimize environmental degradation- A review;Shaviv;Fertil. Res.,1993

3. A review on global energy use patterns in major crop production systems;Kargwal;Environ. Sci.,2022

4. Energy and food systems;Woods;Philos. Trans. R. Soc. Lond. B Biol. Sci.,2010

5. Plant nitrogen assimilation and use efficiency;Xu;Annu. Rev. Plant Biol.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3