Evaluating the Application Potential of Acid-Modified Cotton Straw Biochars in Alkaline Soils Based on Entropy Weight TOPSIS

Author:

Zhu Shengbao123ORCID,Liu Jiao23,Tang Guangmu23,Sun Tao45,Jia Hongtao13,Zhao Hongmei1,Zhang Yunshu23,Lin Ling23,Xu Wanli23

Affiliation:

1. College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China

2. Institute of Soil and Fertilizer, Agricultural Water Saving, Xinjiang Academy of Agricultural Sciences, Urumqi 830092, China

3. Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Saline-Alkali Land in Arid and Semi-Arid Regions), Ministry of Agriculture and Rural Affairs, Urumqi 830092, China

4. Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs of the People’s Republic of China (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China

5. Tianjin Key Laboratory of Agro-Environment and Agro–Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China

Abstract

As a good carbon source and soil conditioner, biochar is widely used in acidic soils but seldom in alkaline soils due to its high pH. In this study, cotton straw biochar was modified with five different acidic materials to obtain wood-vinegar- (WBC), monosodium-glutamate (MSG)-wastewater- (MBC), citric-acid- (CBC), phosphoric-acid- (PBC), and nitric-acid-modified biochars (NBC), and three dosages were used for each modifier. The pristine and modified biochars were characterized with scanning electron microscopy (SEM) and Fourier-transform infrared (FTIR) spectroscopy. The biochar properties such as pH, specific surface area (SSA), and elemental contents were measured. In addition, the technique for order preference by similarity to ideal solution (TOPSIS) model based on entropy weight was used to evaluate the application potential of the biochars in alkaline soils. The FTIR spectra showed that modification with the five acidic materials, MSG wastewater in particular, resulted in more oxygen-containing functional groups such as O-H, C=O, and C-O on the biochar surface. In addition, acid modification greatly decreased the pH: phosphoric acid modification significantly decreased the pH of cotton straw biochar by 5.71–7.88 units. For the same modifier, a higher dosage (i.e., a smaller biochar:modifier ratio) led to a larger decrease in the pH of cotton straw biochar. The magnitudes of increase in total soluble salt content followed the general order of CBCs > PBCs > WBCs > NBCs > MBCs. The SSA, average pore diameter, and total pore volume of biochar were changed as well. Modification using wood vinegar and MSG wastewater significantly decreased the SSA of cotton straw biochar by 15.58–16.24 m2 g−1 (82.7–86.2%) and 15.87–16.80 m2 g−1 (84.2–89.2%), respectively, whereas modification using citric acid and nitric acid significantly increased the SSA of cotton straw biochar by 4.51–4.66 m2 g−1 (23.9–24.7%) and 0.55–54.21 m2 g−1 (2.9–287.7%). The evaluation based on entropy weight TOPSIS model suggested that the MBCs have the highest potential for application in alkaline soils. This study presents a theoretical basis for evaluation of biochar application potential, demonstrates a way of improving biochar application potential, and provides a support for beneficial utilization of agricultural and industrial wastes such as cotton straw, wood vinegar, and MSG wastewater.

Funder

Fourteenth Five-Year Plan of National Key Research and Development Program of China

The Key Research and Development Program of Xinjiang Uygur Autonomous Region

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3