Strawberry Maturity Recognition Based on Improved YOLOv5

Author:

Tao Zhiqing1,Li Ke1ORCID,Rao Yuan1,Li Wei2,Zhu Jun1

Affiliation:

1. School of Information and Computer Science, Anhui Agricultural University, Hefei 230036, China

2. Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China

Abstract

Strawberry maturity detection plays an essential role in modern strawberry yield estimation and robot-assisted picking and sorting. Due to the small size and complex growth environment of strawberries, there are still problems with existing recognition systems’ accuracy and maturity classifications. This article proposes a strawberry maturity recognition algorithm based on an improved YOLOv5s model named YOLOv5s-BiCE. This algorithm model is a replacement of the upsampling algorithm with a CARAFE module structure. It is an improvement on the previous model in terms of its content-aware processing; it also widens the field of vision and maintains a high level of efficiency, resulting in improved object detection capabilities. This article also introduces a double attention mechanism named Biformed for small-target detection, optimizing computing allocation, and enhancing content perception flexibility. Via multi-scale feature fusion, we utilized double attention mechanisms to reduce the number of redundant computations. Additionally, the Focal_EIOU optimization method was introduced to improve its accuracy and address issues related to uneven sample classification in the loss function. The YOLOv5s-BiCE algorithm was better at recognizing strawberry maturity compared to the original YOLOv5s model. It achieved a 2.8% increase in the mean average precision and a 7.4% increase in accuracy for the strawberry maturity dataset. The improved algorithm outperformed other networks, like YOLOv4-tiny, YOLOv4-lite-e, YOLOv4-lite-s, YOLOv7, and Fast RCNN, with recognition accuracy improvements of 3.3%, 4.7%, 4.2%, 1.5%, and 2.2%, respectively. In addition, we developed a corresponding detection app and combined the algorithm with DeepSort to apply it to patrol robots. It was found that the detection algorithm exhibits a fast real-time detection speed, can support intelligent estimations of strawberry yield, and can assist picking robots.

Funder

Guizhou Province Science and Technology Plan Project

University Synergy Innovation Program of Anhui Province

National Natural Science Foundation of China

Anhui Provincial Quality Engineering Project of Higher Education Institutions

Anhui Agricultural University Introduction and Stabilization of Talents Research Funding

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3