Potential Benefits of Polymers in Soil Erosion Control for Agronomical Plans: A Laboratory Experiment

Author:

Yakupoglu TugrulORCID,Rodrigo-Comino JesúsORCID,Cerdà ArtemiORCID

Abstract

New management and techniques to reduce soil and water losses are necessary to achieve goals related to sustainability and develop useful agronomical plans. Among the strategies to reduce soil losses, the use of polymers has been studied but little is known about the effect of them on soil aggregates under extreme rainfall conditions. The main aim of this study was to compare the effects of polyacrylamide (PAM) and polyvinyl alcohol (PVA) on initial soil erosion process activation. We applied both products on soils and soil aggregate stability was measured on polymer treated and control plots. Laboratory erosion plots (pans) were placed on 15% slope, and sequential simulated rainfalls (under dry and wet conditions) with 360 mm h−1 intensity were applied for 12 min. Time to runoff, total runoff, runoff sediment yield, and splash sediment yield were determined. The results show that polymers do not delay runoff initiation; however, they reduced total runoff, sediment yield, and soil transported by the splash. PVA was not effective in reducing the total runoff during the first rainfall being PAM more effective in this way. However, under the sequential rainfall, both polymers obtained positive results, showing PAM some improvements in comparison to PVA. The effect of the polymer to reduce soil transported by splash after performing the second rainfall simulation was clearly demonstrated, meanwhile the effects during the first simulation were not significant. The effectiveness of the polymers on soil aggregates increased with increasing aggregate size. The application of polymers reached the highest efficiency on aggregates of 6.4 mm in diameter.

Funder

THE SCIENTIFIC AND TECHNOLOGICAL RESEARCH COUNCIL OF TURKEY (TUBITAK)

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3