Mechanical Properties of Virgin and Recycled Polymer for Construction Pile Application

Author:

Nicholas Kuan Hoo Tien,Yong Lee Yee,Nee Ting Sim,Khoon Ng Chee,Afiq Mohd Khairul

Abstract

Annual polymer waste generated in Malaysia has increased significantly to more than 1 million tonnes. The prolonged degradation periods required by diverse industrial polymer waste streams are a matter of significant concern, with some taking up to 1000 years to fully degrade. Pursuing a similar environmental concern, the use of bakau piles as supports for lightweight structures in Sarawak, including drainage systems, roads, sewerage, and other water-related structures, has become a matter of concern due to the deforestation of mangrove forests. Both bakau deforestation and polymer waste issues are significant environmental and global concerns. The idea of mitigating mangrove degradation and the non-biodegradable nature of polymer waste has led to the conceptualization of an alternative solution whereby recyclable thermoplastic polymer piles are utilized to supplant bakau piles in providing support for lightweight structures during civil engineering construction projects. Therefore, the study of polymer piles is conducted to examine their mechanical properties in the form of virgin (V) and recycled (R) thermoplastic polymers. In this study, high-density polyethylene (HDPE), polypropylene (PP), and polyvinyl chloride (PVC) are considered, and the possibility of being utilized in pile application has been discussed. Based on the results, all virgin types of thermoplastic polymers (HDPE, PP, and PVC), 50%V:50%R for PP, PP(R), and PVC(R), respectively, exceed the bakau ultimate tensile strength. Thermoplastic polymer piles showed great potential to be the substitution for bakau piles to serve in the construction industry, with the recorded experimental tensile and compressive strength tests.

Publisher

Universiti Putra Malaysia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3